Advertisements
Advertisements
प्रश्न
If \[\frac{5 - \sqrt{3}}{2 + \sqrt{3}} = x + y\sqrt{3}\] , then
विकल्प
x = 13, y = −7
x = −13, y = 7
x = −13, y =- 7
x = 13, y = 7
उत्तर
Given that:`(5-sqrt3)/(2+sqrt3) = x+ysqrt3`We need to find x and y
We know that rationalization factor for `2+sqrt3` is`2-sqrt3` . We will multiply numerator and denominator of the given expression `(5-sqrt3)/(2+sqrt3)`by, 2-sqrt3` to get
`(5-sqrt3)/(2+sqrt3) xx (2-sqrt3)/(2-sqrt2) = (5 xx 2 - 5 xx sqrt3 - 2 xx sqrt3 +(sqrt3)^3)/((2)^2 - (sqrt3)^2)`
` (10-5sqrt3 - 2 sqrt3 +3)/((2)^2 -(sqrt3)^2)`
` = (13-7sqrt3) /(4-3)`
` = 13 - 7sqrt3.`
Since ` x + y sqrt3 = 13 - 7 sqrt3`
On equating rational and irrational terms, we get `x=13 and y= -7`
APPEARS IN
संबंधित प्रश्न
Prove that:
`(a+b+c)/(a^-1b^-1+b^-1c^-1+c^-1a^-1)=abc`
If `a=xy^(p-1), b=xy^(q-1)` and `c=xy^(r-1),` prove that `a^(q-r)b^(r-p)c^(p-q)=1`
Prove that:
`(1/4)^-2-3xx8^(2/3)xx4^0+(9/16)^(-1/2)=16/3`
If `27^x=9/3^x,` find x.
Solve the following equation:
`sqrt(a/b)=(b/a)^(1-2x),` where a and b are distinct primes.
If \[2^{- m} \times \frac{1}{2^m} = \frac{1}{4},\] then \[\frac{1}{14}\left\{ ( 4^m )^{1/2} + \left( \frac{1}{5^m} \right)^{- 1} \right\}\] is equal to
If 10x = 64, what is the value of \[{10}^\frac{x}{2} + 1 ?\]
The value of \[\sqrt{3 - 2\sqrt{2}}\] is
Which of the following is equal to x?
Simplify:
`(1^3 + 2^3 + 3^3)^(1/2)`