Advertisements
Advertisements
प्रश्न
If x = \[\sqrt[3]{2 + \sqrt{3}}\] , then \[x^3 + \frac{1}{x^3} =\]
विकल्प
2
4
8
9
उत्तर
Given that . `x = 3sqrt(2+sqrt3)` It can be simplified as
` x^3 = 2+sqrt3`
`1/ x^3 = 1 /(2+sqrt3)`
We know that rationalization factor for `2+sqrt3` is `2- sqrt3`. We will multiply numerator and denominator of the given expression `1/(2+sqrt3)`by `2-sqrt3`, to get
`1/x^3 = 1/(2+sqrt3 ) xx (2-sqrt3)/(2-sqrt3)`
`= (2-sqrt3)/((2)^2 - (sqrt3)^2)`
`= (2-sqrt3)/(4-3)`
`=2-sqrt3`
Therefore,
`x^3 + 1/x^3 = 2 +sqrt3 +2 - sqrt3`
`= 2+2`
`=4`
APPEARS IN
संबंधित प्रश्न
Simplify the following:
`(3^nxx9^(n+1))/(3^(n-1)xx9^(n-1))`
Assuming that x, y, z are positive real numbers, simplify the following:
`(sqrt2/sqrt3)^5(6/7)^2`
Show that:
`(x^(a^2+b^2)/x^(ab))^(a+b)(x^(b^2+c^2)/x^(bc))^(b+c)(x^(c^2+a^2)/x^(ac))^(a+c)=x^(2(a^3+b^3+c^3))`
If `27^x=9/3^x,` find x.
Find the value of x in the following:
`(2^3)^4=(2^2)^x`
Find the value of x in the following:
`(root3 4)^(2x+1/2)=1/32`
If (x − 1)3 = 8, What is the value of (x + 1)2 ?
The value of m for which \[\left[ \left\{ \left( \frac{1}{7^2} \right)^{- 2} \right\}^{- 1/3} \right]^{1/4} = 7^m ,\] is
If x = \[\frac{2}{3 + \sqrt{7}}\],then (x−3)2 =
Simplify:
`(9^(1/3) xx 27^(-1/2))/(3^(1/6) xx 3^(- 2/3))`