हिंदी

The Value of M for Which ⎡ ⎢ ⎣ { ( 1 7 2 ) − 2 } − 1 / 3 ⎤ ⎥ ⎦ 1 / 4 = 7 M , is - Mathematics

Advertisements
Advertisements

प्रश्न

The value of m for which \[\left[ \left\{ \left( \frac{1}{7^2} \right)^{- 2} \right\}^{- 1/3} \right]^{1/4} = 7^m ,\] is

विकल्प

  • \[- \frac{1}{3}\]

  • \[\frac{1}{4}\]

  • -3

  • 2

MCQ

उत्तर

We have to find the value of m for  \[\left[ \left\{ \left( \frac{1}{7^2} \right)^{- 2} \right\}^{- 1/3} \right]^{1/4} = 7^m ,\]

⇒ `[{1/(7^(2x-2))}^-1/3]^(1/4) = 7^m`

⇒ `[{1/(7^-4)}^(-1/3)]^(1/4) = 7^m`

⇒ `[{1/(7^(-4x(-1)/3)) }}^(1/4)= 7^m`

⇒ `[{1/(7^(4/3))}]^)1/4 = 7^m`

⇒ `[{1/(7^(4/3 xx1/4))}]  = 7^m`

⇒ `[{1/(7^(4/3 xx1/4))}]  = 7^m`

⇒ `[1/(7^(1/3))] = 7^m`

By using rational exponents  `1/a^n = a^-n`

\[7^\frac{- 1}{3} = 7^m\]

Equating power of exponents we get  `- 1/3 = m`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 2: Exponents of Real Numbers - Exercise 2.4 [पृष्ठ ३१]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 9
अध्याय 2 Exponents of Real Numbers
Exercise 2.4 | Q 20 | पृष्ठ ३१

वीडियो ट्यूटोरियलVIEW ALL [1]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×