Advertisements
Advertisements
प्रश्न
The value of m for which \[\left[ \left\{ \left( \frac{1}{7^2} \right)^{- 2} \right\}^{- 1/3} \right]^{1/4} = 7^m ,\] is
विकल्प
\[- \frac{1}{3}\]
\[\frac{1}{4}\]
-3
2
उत्तर
We have to find the value of m for \[\left[ \left\{ \left( \frac{1}{7^2} \right)^{- 2} \right\}^{- 1/3} \right]^{1/4} = 7^m ,\]
⇒ `[{1/(7^(2x-2))}^-1/3]^(1/4) = 7^m`
⇒ `[{1/(7^-4)}^(-1/3)]^(1/4) = 7^m`
⇒ `[{1/(7^(-4x(-1)/3)) }}^(1/4)= 7^m`
⇒ `[{1/(7^(4/3))}]^)1/4 = 7^m`
⇒ `[{1/(7^(4/3 xx1/4))}] = 7^m`
⇒ `[{1/(7^(4/3 xx1/4))}] = 7^m`
⇒ `[1/(7^(1/3))] = 7^m`
By using rational exponents `1/a^n = a^-n`
\[7^\frac{- 1}{3} = 7^m\]
Equating power of exponents we get `- 1/3 = m`
APPEARS IN
संबंधित प्रश्न
Simplify the following
`(a^(3n-9))^6/(a^(2n-4))`
Simplify:
`((25)^(3/2)xx(243)^(3/5))/((16)^(5/4)xx(8)^(4/3))`
Simplify:
`(sqrt2/5)^8div(sqrt2/5)^13`
Find the value of x in the following:
`(2^3)^4=(2^2)^x`
Solve the following equation:
`4^(x-1)xx(0.5)^(3-2x)=(1/8)^x`
If `2^x xx3^yxx5^z=2160,` find x, y and z. Hence, compute the value of `3^x xx2^-yxx5^-z.`
The value of x − yx-y when x = 2 and y = −2 is
If g = `t^(2/3) + 4t^(-1/2)`, what is the value of g when t = 64?
The value of 64-1/3 (641/3-642/3), is
Simplify:
`(3/5)^4 (8/5)^-12 (32/5)^6`