Advertisements
Advertisements
प्रश्न
The value of \[\left\{ \left( 23 + 2^2 \right)^{2/3} + (140 - 19 )^{1/2} \right\}^2 ,\] is
विकल्प
196
289
324
400
उत्तर
We have to find the value of `{(23+2^2)^(2/3)+ (140- 19 )^(1/2) }^2`
`{(23+2^2)^(2/3)+ (140- 19 )^(1/2) }^2 = {(23+4)^(2/3)+ (121)^(1/2) }^2`
= `{(27)^(2/3)+ (121)^(1/2) }^2`
`={(3^3)^(2/3)+ (11^2)^(1/2) }^2`
`{(23+2^2)^(2/3)+ (140- 19 )^(1/2) }^2`= ` {3^(3 xx2/3) +11
^( 2xx 1/2)}^2`
` = {3^(3 xx2/3) +11^( 2xx 1/2)}^2`
= `{3^2 + 11}^2`
`⇒ {(23+2^2)^(2/3)+ (140- 19 )^(1/2) }^2 = {9+11}^2`
By using the identity `(a+b)^2 = a^2 +2ab +b^2` we get,
`= 9 xx 9 +2 xx 9 xx 11 + 11 xx 11`
`= 81 +198 +121`
`= 400`
APPEARS IN
संबंधित प्रश्न
Prove that:
`1/(1+x^(a-b))+1/(1+x^(b-a))=1`
Solve the following equation for x:
`4^(x-1)xx(0.5)^(3-2x)=(1/8)^x`
Simplify:
`root5((32)^-3)`
Prove that:
`9^(3/2)-3xx5^0-(1/81)^(-1/2)=15`
Show that:
`{(x^(a-a^-1))^(1/(a-1))}^(a/(a+1))=x`
If x is a positive real number and x2 = 2, then x3 =
\[\frac{1}{\sqrt{9} - \sqrt{8}}\] is equal to
If \[\sqrt{2} = 1 . 414,\] then the value of \[\sqrt{6} - \sqrt{3}\] upto three places of decimal is
Simplify:
`11^(1/2)/11^(1/4)`
Simplify:
`7^(1/2) . 8^(1/2)`