Advertisements
Advertisements
Question
The value of m for which \[\left[ \left\{ \left( \frac{1}{7^2} \right)^{- 2} \right\}^{- 1/3} \right]^{1/4} = 7^m ,\] is
Options
\[- \frac{1}{3}\]
\[\frac{1}{4}\]
-3
2
Solution
We have to find the value of m for \[\left[ \left\{ \left( \frac{1}{7^2} \right)^{- 2} \right\}^{- 1/3} \right]^{1/4} = 7^m ,\]
⇒ `[{1/(7^(2x-2))}^-1/3]^(1/4) = 7^m`
⇒ `[{1/(7^-4)}^(-1/3)]^(1/4) = 7^m`
⇒ `[{1/(7^(-4x(-1)/3)) }}^(1/4)= 7^m`
⇒ `[{1/(7^(4/3))}]^)1/4 = 7^m`
⇒ `[{1/(7^(4/3 xx1/4))}] = 7^m`
⇒ `[{1/(7^(4/3 xx1/4))}] = 7^m`
⇒ `[1/(7^(1/3))] = 7^m`
By using rational exponents `1/a^n = a^-n`
\[7^\frac{- 1}{3} = 7^m\]
Equating power of exponents we get `- 1/3 = m`
APPEARS IN
RELATED QUESTIONS
Simplify the following:
`(6(8)^(n+1)+16(2)^(3n-2))/(10(2)^(3n+1)-7(8)^n)`
Assuming that x, y, z are positive real numbers, simplify the following:
`(sqrt2/sqrt3)^5(6/7)^2`
Simplify:
`((5^-1xx7^2)/(5^2xx7^-4))^(7/2)xx((5^-2xx7^3)/(5^3xx7^-5))^(-5/2)`
Show that:
`(x^(a^2+b^2)/x^(ab))^(a+b)(x^(b^2+c^2)/x^(bc))^(b+c)(x^(c^2+a^2)/x^(ac))^(a+c)=x^(2(a^3+b^3+c^3))`
Find the value of x in the following:
`5^(2x+3)=1`
Find the value of x in the following:
`(13)^(sqrtx)=4^4-3^4-6`
If \[8^{x + 1}\] = 64 , what is the value of \[3^{2x + 1}\] ?
If a, m, n are positive ingegers, then \[\left\{ \sqrt[m]{\sqrt[n]{a}} \right\}^{mn}\] is equal to
When simplified \[(256) {}^{- ( 4^{- 3/2} )}\] is
Find:-
`32^(2/5)`