Advertisements
Advertisements
Question
Show that:
`(x^(a^2+b^2)/x^(ab))^(a+b)(x^(b^2+c^2)/x^(bc))^(b+c)(x^(c^2+a^2)/x^(ac))^(a+c)=x^(2(a^3+b^3+c^3))`
Solution
`(x^(a^2+b^2)/x^(ab))^(a+b)(x^(b^2+c^2)/x^(bc))^(b+c)(x^(c^2+a^2)/x^(ac))^(a+c)=x^(2(a^3+b^3+c^3))`
LHS = `(x^(a^2+b^2)/x^(ab))^(a+b)(x^(b^2+c^2)/x^(bc))^(b+c)(x^(c^2+a^2)/x^(ac))^(a+c)`
`=(x^(a^2+b^2-ab))^(a+b)(x^(b^2+c^2-bc))^(b+c)(x^(c^2+a^2-ac))^(a+c)`
`=[x^((a+b)(a^2+b^2-ab))][x^((b+c)(b^2+c^2-bc))][x^((a+c)(c^2+a^2-ac))]`
`=(x^(a^3+b^3))(x^(b^3+c^3))(x^(a^3+c^3))`
`=x^(2(a^3+b^3+c^3))`
= RHS
APPEARS IN
RELATED QUESTIONS
Find:-
`64^(1/2)`
Prove that:
`1/(1+x^(a-b))+1/(1+x^(b-a))=1`
Solve the following equation for x:
`7^(2x+3)=1`
Show that:
`[{x^(a(a-b))/x^(a(a+b))}div{x^(b(b-a))/x^(b(b+a))}]^(a+b)=1`
Write the value of \[\left\{ 5( 8^{1/3} + {27}^{1/3} )^3 \right\}^{1/4} . \]
For any positive real number x, write the value of \[\left\{ \left( x^a \right)^b \right\}^\frac{1}{ab} \left\{ \left( x^b \right)^c \right\}^\frac{1}{bc} \left\{ \left( x^c \right)^a \right\}^\frac{1}{ca}\]
The square root of 64 divided by the cube root of 64 is
When simplified \[\left( - \frac{1}{27} \right)^{- 2/3}\] is
The value of \[\left\{ \left( 23 + 2^2 \right)^{2/3} + (140 - 19 )^{1/2} \right\}^2 ,\] is
If x is a positive real number and x2 = 2, then x3 =