Advertisements
Advertisements
प्रश्न
Simplify the following
`(a^(3n-9))^6/(a^(2n-4))`
उत्तर
`(a^(3n-9))^6/(a^(2n-4))`
`=a^(6(3n-9))/a^(2n-4)`
`=a^(18n-54)/a^(2n-4)`
`=a^(18n-54)xxa^-(2n-4)`
`=a^(18n-54)xxa^(-2n+4)`
`=a^(18n-54-2n+4)`
`=a^(16n-50)`
APPEARS IN
संबंधित प्रश्न
Simplify the following
`3(a^4b^3)^10xx5(a^2b^2)^3`
If abc = 1, show that `1/(1+a+b^-1)+1/(1+b+c^-1)+1/(1+c+a^-1)=1`
Simplify the following:
`(5^(n+3)-6xx5^(n+1))/(9xx5^x-2^2xx5^n)`
Solve the following equations for x:
`2^(2x)-2^(x+3)+2^4=0`
Prove that:
`(1/4)^-2-3xx8^(2/3)xx4^0+(9/16)^(-1/2)=16/3`
If a and b are different positive primes such that
`((a^-1b^2)/(a^2b^-4))^7div((a^3b^-5)/(a^-2b^3))=a^xb^y,` find x and y.
If a, b, c are positive real numbers, then \[\sqrt[5]{3125 a^{10} b^5 c^{10}}\] is equal to
If \[x = 7 + 4\sqrt{3}\] and xy =1, then \[\frac{1}{x^2} + \frac{1}{y^2} =\]
\[\frac{1}{\sqrt{9} - \sqrt{8}}\] is equal to
If x = \[\sqrt[3]{2 + \sqrt{3}}\] , then \[x^3 + \frac{1}{x^3} =\]