Advertisements
Advertisements
प्रश्न
Simplify the following:
`(5^(n+3)-6xx5^(n+1))/(9xx5^x-2^2xx5^n)`
उत्तर
`(5^(n+3)-6xx5^(n+1))/(9xx5^x-2^2xx5^n)`
`=(5^(n+1)(5^2-6))/(5^n(9xx2^2))`
`=(5^nxx5xx(25-6))/(5^n(9-4))`
`=(5xx19)/5`
= 19
shaalaa.com
क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
APPEARS IN
संबंधित प्रश्न
Simplify:-
`2^(2/3). 2^(1/5)`
Solve the following equation for x:
`2^(3x-7)=256`
Assuming that x, y, z are positive real numbers, simplify the following:
`sqrt(x^3y^-2)`
Assuming that x, y, z are positive real numbers, simplify the following:
`(x^((-2)/3)y^((-1)/2))^2`
Prove that:
`sqrt(3xx5^-3)divroot3(3^-1)sqrt5xxroot6(3xx5^6)=3/5`
Prove that:
`9^(3/2)-3xx5^0-(1/81)^(-1/2)=15`
Show that:
`(x^(a-b))^(a+b)(x^(b-c))^(b+c)(x^(c-a))^(c+a)=1`
Find the value of x in the following:
`5^(2x+3)=1`
If \[\frac{x}{x^{1 . 5}} = 8 x^{- 1}\] and x > 0, then x =
Simplify:
`11^(1/2)/11^(1/4)`