Advertisements
Advertisements
Question
Simplify the following:
`(5^(n+3)-6xx5^(n+1))/(9xx5^x-2^2xx5^n)`
Solution
`(5^(n+3)-6xx5^(n+1))/(9xx5^x-2^2xx5^n)`
`=(5^(n+1)(5^2-6))/(5^n(9xx2^2))`
`=(5^nxx5xx(25-6))/(5^n(9-4))`
`=(5xx19)/5`
= 19
APPEARS IN
RELATED QUESTIONS
Show that:
`(x^(1/(a-b)))^(1/(a-c))(x^(1/(b-c)))^(1/(b-a))(x^(1/(c-a)))^(1/(c-b))=1`
Show that:
`{(x^(a-a^-1))^(1/(a-1))}^(a/(a+1))=x`
If a and b are distinct primes such that `root3 (a^6b^-4)=a^xb^(2y),` find x and y.
State the quotient law of exponents.
If (x − 1)3 = 8, What is the value of (x + 1)2 ?
The value of \[\left\{ 2 - 3 (2 - 3 )^3 \right\}^3\] is
If \[\frac{2^{m + n}}{2^{n - m}} = 16\], \[\frac{3^p}{3^n} = 81\] and \[a = 2^{1/10}\],than \[\frac{a^{2m + n - p}}{( a^{m - 2n + 2p} )^{- 1}} =\]
If \[x = \frac{\sqrt{5} + \sqrt{3}}{\sqrt{5} - \sqrt{3}}\] and \[y = \frac{\sqrt{5} - \sqrt{3}}{\sqrt{5} + \sqrt{3}}\] then x + y +xy=
If x= \[\frac{\sqrt{3} - \sqrt{2}}{\sqrt{3} + \sqrt{2}}\] and y = \[\frac{\sqrt{3} + \sqrt{2}}{\sqrt{3} - \sqrt{2}}\] , then x2 + y +y2 =
\[\frac{1}{\sqrt{9} - \sqrt{8}}\] is equal to