Advertisements
Advertisements
प्रश्न
Assuming that x, y, z are positive real numbers, simplify the following:
`sqrt(x^3y^-2)`
उत्तर
We have to simplify the following, assuming that x, y, z are positive real numbers
Given `sqrt(x^3y^-2)`
As x and y are positive real numbers then we can write
`sqrt(x^3y^-2)=(x^3y^-2)^(1/2)`
`=(x^(3xx1/2)xxy^(-2xx1/2))`
`=(x^(3/2)y^-1)`
By using law of rational exponents `a^-n=1/a^n` we have
`sqrt(x^3y^-2)=x^(3/2)xx1/y`
`=x^(3/2)/y`
Hence the simplified value of `sqrt(x^3y^-2)` is `x^(3/2)/y`
APPEARS IN
संबंधित प्रश्न
Prove that:
`1/(1+x^(a-b))+1/(1+x^(b-a))=1`
Solve the following equation for x:
`2^(3x-7)=256`
Prove that:
`(64/125)^(-2/3)+1/(256/625)^(1/4)+(sqrt25/root3 64)=65/16`
Show that:
`[{x^(a(a-b))/x^(a(a+b))}div{x^(b(b-a))/x^(b(b+a))}]^(a+b)=1`
If 3x = 5y = (75)z, show that `z=(xy)/(2x+y)`
Find the value of x in the following:
`(root3 4)^(2x+1/2)=1/32`
Write the value of \[\left\{ 5( 8^{1/3} + {27}^{1/3} )^3 \right\}^{1/4} . \]
The value of x − yx-y when x = 2 and y = −2 is
If x is a positive real number and x2 = 2, then x3 =
Find:-
`125^((-1)/3)`