Advertisements
Advertisements
प्रश्न
Write the value of \[\left\{ 5( 8^{1/3} + {27}^{1/3} )^3 \right\}^{1/4} . \]
उत्तर
We have to find the value of. `{5(8^(1/3)+27^(1/3))^3}^(1/4)`So,
`{5(8^(1/3)+27^(1/3))^3)}^(1/4) ={5(2^(3^xx1/3) +3^(3xx1/3))^3)}^(1/4)`
`= {5(2^(3^xx1/3)+3^(3^xx1/3))^3}^(1/4)`
=`{5(2+3)^3}^(1/4)`
=`{5xx5^3}^(1/4)`
By using rational exponents `a^mxx a^n = a^(m+n)` we get
`{5(8^(1/3)+27^(1/3))^3}^(1/4)` =`{5^(1+3)}^(1/4)`
`=5^(4xx1/4)`
`=5^(4xx1/4)`
`=5^1`
= 5
Hence the simplified value of `{5(8^(1/3)+27^(1/3))^3}^(1/4)` is 5.
APPEARS IN
संबंधित प्रश्न
Simplify:-
`2^(2/3). 2^(1/5)`
If a = 3 and b = -2, find the values of :
(a + b)ab
If `1176=2^a3^b7^c,` find a, b and c.
Show that:
`{(x^(a-a^-1))^(1/(a-1))}^(a/(a+1))=x`
The value of \[\left\{ 2 - 3 (2 - 3 )^3 \right\}^3\] is
Which one of the following is not equal to \[\left( \sqrt[3]{8} \right)^{- 1/2} ?\]
If \[x = \frac{\sqrt{5} + \sqrt{3}}{\sqrt{5} - \sqrt{3}}\] and \[y = \frac{\sqrt{5} - \sqrt{3}}{\sqrt{5} + \sqrt{3}}\] then x + y +xy=
If \[x = \sqrt{6} + \sqrt{5}\],then \[x^2 + \frac{1}{x^2} - 2 =\]
Find:-
`125^((-1)/3)`
Simplify:
`(1^3 + 2^3 + 3^3)^(1/2)`