Advertisements
Advertisements
प्रश्न
For any positive real number x, find the value of \[\left( \frac{x^a}{x^b} \right)^{a + b} \times \left( \frac{x^b}{x^c} \right)^{b + c} \times \left( \frac{x^c}{x^a} \right)^{c + a}\].
उत्तर
We have to find the value of L = `(x^a/x^a)^(a+b) xx (x^b/x^c)^(b+c) xx(x^c/x^a)^(c+a) `
`L=(x^(a(a+b))/(x^(b(a+b)))) xx (x^(b(b+c))/(x^(c(b+c)))) xx (x^(c(c+b))/(x^(a(c+a)))) `
`= (x^(a^2+ab))/ (x^(ba+b^2)) xx (x^(b^2+bc))/ (x^(bc+c^2)) xx (x^(c^2+ca))/ (x^(ac+b^2))`
By using rational exponents, `a^mxx a^n = a^(m+n)` we get
`L=(x^(a^2+ab+b^2+bc+c^2+ca))/(x^(ab+b^2+bc+c^2+ac+a^2))`
By using rational exponents `a^m/a^n= a^(m-n)` we get
`L = x^((a^2+ab+b^2+bc+c^2+ca) -(ab+b^2+bc+c^2+ac+a^2))`
`=x^((a^2+ab+b^2+bc+c^2+ca) -(ab+b^2+bc+c^2+ac+a^2))`
`=x^0`
By definition we can write `x^0` as 1
Hence the value of expression is 1.
APPEARS IN
संबंधित प्रश्न
If a = 3 and b = -2, find the values of :
aa + bb
Simplify:
`(0.001)^(1/3)`
Solve the following equation:
`3^(x-1)xx5^(2y-3)=225`
State the power law of exponents.
If 3x-1 = 9 and 4y+2 = 64, what is the value of \[\frac{x}{y}\] ?
The value of x − yx-y when x = 2 and y = −2 is
If \[\frac{3^{2x - 8}}{225} = \frac{5^3}{5^x},\] then x =
If x= \[\frac{\sqrt{3} - \sqrt{2}}{\sqrt{3} + \sqrt{2}}\] and y = \[\frac{\sqrt{3} + \sqrt{2}}{\sqrt{3} - \sqrt{2}}\] , then x2 + y +y2 =
If x = \[\sqrt[3]{2 + \sqrt{3}}\] , then \[x^3 + \frac{1}{x^3} =\]
Simplify:
`(1^3 + 2^3 + 3^3)^(1/2)`