Advertisements
Advertisements
प्रश्न
The value of x − yx-y when x = 2 and y = −2 is
विकल्प
18
-18
14
-14
उत्तर
Given `x- y ^(x-y)`
Here `x = 2, =-2`
By substituting in `x- y ^(x-y)` we get
`x-y^(x-y) = 2-(-2)^(2-(-2))`
`= 2-(-2)^(2 +2))`
`= 2-(-2)^4`
= -14
The value of `x- y ^(x-y)`is – 14
Hence the correct choice is d .
APPEARS IN
संबंधित प्रश्न
Solve the following equation for x:
`4^(x-1)xx(0.5)^(3-2x)=(1/8)^x`
Assuming that x, y, z are positive real numbers, simplify the following:
`root5(243x^10y^5z^10)`
Prove that:
`(64/125)^(-2/3)+1/(256/625)^(1/4)+(sqrt25/root3 64)=65/16`
Prove that:
`((0.6)^0-(0.1)^-1)/((3/8)^-1(3/2)^3+((-1)/3)^-1)=(-3)/2`
Find the value of x in the following:
`(3/5)^x(5/3)^(2x)=125/27`
If \[\frac{2^{m + n}}{2^{n - m}} = 16\], \[\frac{3^p}{3^n} = 81\] and \[a = 2^{1/10}\],than \[\frac{a^{2m + n - p}}{( a^{m - 2n + 2p} )^{- 1}} =\]
If o <y <x, which statement must be true?
If \[\sqrt{2^n} = 1024,\] then \[{3^2}^\left( \frac{n}{4} - 4 \right) =\]
\[\frac{1}{\sqrt{9} - \sqrt{8}}\] is equal to
Simplify:
`11^(1/2)/11^(1/4)`