Advertisements
Advertisements
प्रश्न
Prove that:
`((0.6)^0-(0.1)^-1)/((3/8)^-1(3/2)^3+((-1)/3)^-1)=(-3)/2`
उत्तर
We have to prove that `((0.6)^0-(0.1)^-1)/((3/8)^-1(3/2)^3+((-1)/3)^-1)=(-3)/2`
Let x = `((0.6)^0-(0.1)^-1)/((3/8)^-1(3/2)^3+((-1)/3)^-1)`
`=(1-((0.1xx10)/(1xx10))^-1)/((3^-1/2^(3xx(-1)))(3^3/2^3)+((-1)^-1/3^-1))`
`=(1-1/10^-1)/((3^-1/2^-3)(3^3/2^3)+((-1)/(1/3^1)))`
`=(1-1/(1/10))/((3^(-1+3)/2^(-3+3))+(-1xx3/1))`
`=(1-1xx10)/(3^2/2^0+(-3))`
`=(1-10)/(3^2/1-3)`
`=(-9)/(9-3)`
`=(-9)/6`
`=(-3)/2`
Hence, `((0.6)^0-(0.1)^-1)/((3/8)^-1(3/2)^3+((-1)/3)^-1)=(-3)/2`
APPEARS IN
संबंधित प्रश्न
Prove that:
`1/(1+x^(a-b))+1/(1+x^(b-a))=1`
If `27^x=9/3^x,` find x.
If `3^(x+1)=9^(x-2),` find the value of `2^(1+x)`
Solve the following equation:
`3^(x+1)=27xx3^4`
Write the value of \[\left\{ 5( 8^{1/3} + {27}^{1/3} )^3 \right\}^{1/4} . \]
Which of the following is (are) not equal to \[\left\{ \left( \frac{5}{6} \right)^{1/5} \right\}^{- 1/6}\] ?
If \[\frac{2^{m + n}}{2^{n - m}} = 16\], \[\frac{3^p}{3^n} = 81\] and \[a = 2^{1/10}\],than \[\frac{a^{2m + n - p}}{( a^{m - 2n + 2p} )^{- 1}} =\]
The positive square root of \[7 + \sqrt{48}\] is
Find:-
`32^(1/5)`
Find:-
`16^(3/4)`