Advertisements
Advertisements
प्रश्न
Show that:
`1/(1+x^(a-b))+1/(1+x^(b-a))=1`
उत्तर
`1/(1+x^(a-b))+1/(1+x^(b-a))`
`=1/(1+(x^a/x^b))+1/(1+(x^b/x^a))`
`=1/((x^b+x^a)/x^b)+1/((x^a+x^b)/x^a)`
`=x^b/(x^b+x^a)+x^a/(x^a+x^b)`
`=(x^b+x^a)/(x^b+x^a)`
= 1
APPEARS IN
संबंधित प्रश्न
Simplify the following
`(2x^-2y^3)^3`
Simplify the following
`((x^2y^2)/(a^2b^3))^n`
Prove that:
`(x^a/x^b)^cxx(x^b/x^c)^axx(x^c/x^a)^b=1`
Solve the following equations for x:
`2^(2x)-2^(x+3)+2^4=0`
Prove that:
`(3^-3xx6^2xxsqrt98)/(5^2xxroot3(1/25)xx(15)^(-4/3)xx3^(1/3))=28sqrt2`
Show that:
`(x^(a-b))^(a+b)(x^(b-c))^(b+c)(x^(c-a))^(c+a)=1`
Write the value of \[\left\{ 5( 8^{1/3} + {27}^{1/3} )^3 \right\}^{1/4} . \]
If 9x+2 = 240 + 9x, then x =
If x= \[\frac{\sqrt{3} - \sqrt{2}}{\sqrt{3} + \sqrt{2}}\] and y = \[\frac{\sqrt{3} + \sqrt{2}}{\sqrt{3} - \sqrt{2}}\] , then x2 + y +y2 =
If x = \[\sqrt[3]{2 + \sqrt{3}}\] , then \[x^3 + \frac{1}{x^3} =\]