Advertisements
Advertisements
Question
Show that:
`1/(1+x^(a-b))+1/(1+x^(b-a))=1`
Solution
`1/(1+x^(a-b))+1/(1+x^(b-a))`
`=1/(1+(x^a/x^b))+1/(1+(x^b/x^a))`
`=1/((x^b+x^a)/x^b)+1/((x^a+x^b)/x^a)`
`=x^b/(x^b+x^a)+x^a/(x^a+x^b)`
`=(x^b+x^a)/(x^b+x^a)`
= 1
APPEARS IN
RELATED QUESTIONS
Show that:
`[{x^(a(a-b))/x^(a(a+b))}div{x^(b(b-a))/x^(b(b+a))}]^(a+b)=1`
Find the value of x in the following:
`2^(x-7)xx5^(x-4)=1250`
If `3^(4x) = (81)^-1` and `10^(1/y)=0.0001,` find the value of ` 2^(-x+4y)`.
If `5^(3x)=125` and `10^y=0.001,` find x and y.
The value of x − yx-y when x = 2 and y = −2 is
When simplified \[( x^{- 1} + y^{- 1} )^{- 1}\] is equal to
If x-2 = 64, then x1/3+x0 =
If a, b, c are positive real numbers, then \[\sqrt[5]{3125 a^{10} b^5 c^{10}}\] is equal to
If \[\frac{3^{2x - 8}}{225} = \frac{5^3}{5^x},\] then x =
If \[\sqrt{2^n} = 1024,\] then \[{3^2}^\left( \frac{n}{4} - 4 \right) =\]