Advertisements
Advertisements
Question
If \[\frac{3^{2x - 8}}{225} = \frac{5^3}{5^x},\] then x =
Options
2
3
5
4
Solution
We have to find the value of x provided \[\frac{3^{2x - 8}}{225} = \frac{5^3}{5^x},\]
So,
\[\frac{3^{2x - 8}}{3^2 × 5^2} = \frac{5^3}{5^x}\]
By cross multiplication we get
`3^(2x-8) xx 5^x = 3^2xx5^2 xx5^3`
By equating exponents we get
`3^(2x-8) = 3^2`
`2x - 8 = 2`
`2x= 2+8`
`2x = 10`
`x=10/2`
`x=5`
And
`5^x = 5^(3+2)`
`x=3+2`
`x=5`
APPEARS IN
RELATED QUESTIONS
Prove that:
`(x^a/x^b)^cxx(x^b/x^c)^axx(x^c/x^a)^b=1`
Solve the following equations for x:
`2^(2x)-2^(x+3)+2^4=0`
Prove that:
`sqrt(1/4)+(0.01)^(-1/2)-(27)^(2/3)=3/2`
If 3x = 5y = (75)z, show that `z=(xy)/(2x+y)`
Find the value of x in the following:
`2^(x-7)xx5^(x-4)=1250`
If `2^x xx3^yxx5^z=2160,` find x, y and z. Hence, compute the value of `3^x xx2^-yxx5^-z.`
Show that:
`((a+1/b)^mxx(a-1/b)^n)/((b+1/a)^mxx(b-1/a)^n)=(a/b)^(m+n)`
The value of \[\left\{ 8^{- 4/3} \div 2^{- 2} \right\}^{1/2}\] is
If 102y = 25, then 10-y equals
Find:-
`32^(1/5)`