Advertisements
Advertisements
Question
The value of \[\left\{ 8^{- 4/3} \div 2^{- 2} \right\}^{1/2}\] is
Options
\[\frac{1}{2}\]
2
\[\frac{1}{4}\]
4
Solution
Find the value of `{8^ (- 4/3)÷ 2^-2}^(1/2)`
`{8^ (- 4/3)÷ 2^-2}^(1/2) = {2^(3x-4/3)÷2^-2 }^(1/2)`
`= {2^(3x(-4)/3)÷2^-2 }^(1/2)`
`= {2^-4 ÷2^-2 }^(1/2)`
`{8^ (- 4/3)÷ 2^-2}^(1/2) = {2^(-4xx1/2)÷ 2^(-2xx1/2)}`
`= {2^(-4xx1/2)÷ 2^(-2xx1/2)}`
` = {2^2 ÷ 2^-1}`
` = {(1/2^2)/(1/2)}`
`{8^ (- 4/3)÷ 2^-2}^(1/2) = {1/(2xx2) xx 2/1}`
=`{1/(2xx2) xx 2/1}`
= `1/2`
APPEARS IN
RELATED QUESTIONS
Simplify the following
`(2x^-2y^3)^3`
Simplify:
`(16^(-1/5))^(5/2)`
Simplify:
`((5^-1xx7^2)/(5^2xx7^-4))^(7/2)xx((5^-2xx7^3)/(5^3xx7^-5))^(-5/2)`
Prove that:
`(1/4)^-2-3xx8^(2/3)xx4^0+(9/16)^(-1/2)=16/3`
If `27^x=9/3^x,` find x.
Find the value of x in the following:
`5^(2x+3)=1`
Determine `(8x)^x,`If `9^(x+2)=240+9^x`
\[\frac{5^{n + 2} - 6 \times 5^{n + 1}}{13 \times 5^n - 2 \times 5^{n + 1}}\] is equal to
If \[x = \frac{\sqrt{5} + \sqrt{3}}{\sqrt{5} - \sqrt{3}}\] and \[y = \frac{\sqrt{5} - \sqrt{3}}{\sqrt{5} + \sqrt{3}}\] then x + y +xy=
If \[\frac{5 - \sqrt{3}}{2 + \sqrt{3}} = x + y\sqrt{3}\] , then