Advertisements
Advertisements
प्रश्न
The value of \[\left\{ 8^{- 4/3} \div 2^{- 2} \right\}^{1/2}\] is
विकल्प
\[\frac{1}{2}\]
2
\[\frac{1}{4}\]
4
उत्तर
Find the value of `{8^ (- 4/3)÷ 2^-2}^(1/2)`
`{8^ (- 4/3)÷ 2^-2}^(1/2) = {2^(3x-4/3)÷2^-2 }^(1/2)`
`= {2^(3x(-4)/3)÷2^-2 }^(1/2)`
`= {2^-4 ÷2^-2 }^(1/2)`
`{8^ (- 4/3)÷ 2^-2}^(1/2) = {2^(-4xx1/2)÷ 2^(-2xx1/2)}`
`= {2^(-4xx1/2)÷ 2^(-2xx1/2)}`
` = {2^2 ÷ 2^-1}`
` = {(1/2^2)/(1/2)}`
`{8^ (- 4/3)÷ 2^-2}^(1/2) = {1/(2xx2) xx 2/1}`
=`{1/(2xx2) xx 2/1}`
= `1/2`
APPEARS IN
संबंधित प्रश्न
Prove that:
`(x^a/x^b)^(a^2+ab+b^2)xx(x^b/x^c)^(b^2+bc+c^2)xx(x^c/x^a)^(c^2+ca+a^2)=1`
Simplify the following:
`(5xx25^(n+1)-25xx5^(2n))/(5xx5^(2n+3)-25^(n+1))`
If `1176=2^a3^b7^c,` find a, b and c.
Prove that:
`(2^n+2^(n-1))/(2^(n+1)-2^n)=3/2`
Prove that:
`(3^-3xx6^2xxsqrt98)/(5^2xxroot3(1/25)xx(15)^(-4/3)xx3^(1/3))=28sqrt2`
If `x = a^(m+n),` `y=a^(n+l)` and `z=a^(l+m),` prove that `x^my^nz^l=x^ny^lz^m`
If 24 × 42 =16x, then find the value of x.
If x = 2 and y = 4, then \[\left( \frac{x}{y} \right)^{x - y} + \left( \frac{y}{x} \right)^{y - x} =\]
If \[2^{- m} \times \frac{1}{2^m} = \frac{1}{4},\] then \[\frac{1}{14}\left\{ ( 4^m )^{1/2} + \left( \frac{1}{5^m} \right)^{- 1} \right\}\] is equal to
If \[x = 7 + 4\sqrt{3}\] and xy =1, then \[\frac{1}{x^2} + \frac{1}{y^2} =\]