Advertisements
Advertisements
प्रश्न
If `x = a^(m+n),` `y=a^(n+l)` and `z=a^(l+m),` prove that `x^my^nz^l=x^ny^lz^m`
उत्तर
Given `x = a^(m+n),` `y=a^(n+l)` and `z=a^(l+m)`
Putting the values ofx, y and z in `x^my^nz^l,` we get
`x^my^nz^l`
`=(a^(m+n))^m(a^(n+l))^n(a^(l+m))^l`
`=(a^(m^2+nm))(a^(n^2+ln))(a^(l^2+lm))`
`=a^(m^2+n^2+l^2+nm+ln+lm)`
Putting the values of x, y and z in `x^ny^lz^m,` we get
`x^ny^lz^m`
`=(a^(m+n))^n(a^(n+l))^l(a^(l+m))^m`
`=(a^(mn+n^2))(a^(nl+l^2))(a^(lm+m^2))`
`=a^(mn+n^2+nl+l^2+lm+m^2)`
So, `x^my^nz^l=x^ny^lz^m`
APPEARS IN
संबंधित प्रश्न
Simplify the following
`3(a^4b^3)^10xx5(a^2b^2)^3`
Simplify the following
`((x^2y^2)/(a^2b^3))^n`
Assuming that x, y, z are positive real numbers, simplify the following:
`root5(243x^10y^5z^10)`
Find the value of x in the following:
`5^(2x+3)=1`
If `2^x xx3^yxx5^z=2160,` find x, y and z. Hence, compute the value of `3^x xx2^-yxx5^-z.`
State the power law of exponents.
If 24 × 42 =16x, then find the value of x.
Write the value of \[\sqrt[3]{7} \times \sqrt[3]{49} .\]
If (x − 1)3 = 8, What is the value of (x + 1)2 ?
The value of \[\sqrt{3 - 2\sqrt{2}}\] is