Advertisements
Advertisements
प्रश्न
Simplify the following
`3(a^4b^3)^10xx5(a^2b^2)^3`
उत्तर
`3(a^4b^3)^10xx5(a^2b^2)^3`
`=3xxa^40xxb^30xx5xxa^6xxb^6`
`=15xxa^40xxa^6xxb^30xxb^6`
`=15xxa^(40+6)xxb^(30+6)` `[a^mxxa^n=a^(m+n)]`
`=15a^46b^36`
shaalaa.com
क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
APPEARS IN
संबंधित प्रश्न
Find:-
`64^(1/2)`
If abc = 1, show that `1/(1+a+b^-1)+1/(1+b+c^-1)+1/(1+c+a^-1)=1`
Prove that:
`sqrt(3xx5^-3)divroot3(3^-1)sqrt5xxroot6(3xx5^6)=3/5`
Show that:
`(x^(1/(a-b)))^(1/(a-c))(x^(1/(b-c)))^(1/(b-a))(x^(1/(c-a)))^(1/(c-b))=1`
Show that:
`{(x^(a-a^-1))^(1/(a-1))}^(a/(a+1))=x`
If `x = a^(m+n),` `y=a^(n+l)` and `z=a^(l+m),` prove that `x^my^nz^l=x^ny^lz^m`
State the product law of exponents.
When simplified \[\left( - \frac{1}{27} \right)^{- 2/3}\] is
`(2/3)^x (3/2)^(2x)=81/16 `then x =
If x is a positive real number and x2 = 2, then x3 =