Advertisements
Advertisements
Question
If 3x = 5y = (75)z, show that `z=(xy)/(2x+y)`
Solution
Let 3x = 5y = (75)z = k
`rArr3=k^(1/x),` `5=k^(1/y),` `75=k^(1/z)`
`rArr5^2xx3=k^(1/z)`
`rArr(k^(1/y))^2xxk^(1/x)=k^(1/z)`
`rArrk^(2/y)xxk^(1/x)=k^(1/z)`
`rArrk^(2/y+1/x)=k^(1/z)`
`rArr2/y+1/x=1/z`
`rArr(2x+y)/(xy)=1/z`
`rArrz=(xy)/(2x+y)`
APPEARS IN
RELATED QUESTIONS
Simplify:
`(16^(-1/5))^(5/2)`
Prove that:
`(2^n+2^(n-1))/(2^(n+1)-2^n)=3/2`
Show that:
`(a^(x+1)/a^(y+1))^(x+y)(a^(y+2)/a^(z+2))^(y+z)(a^(z+3)/a^(x+3))^(z+x)=1`
If `27^x=9/3^x,` find x.
The seventh root of x divided by the eighth root of x is
If \[x + \sqrt{15} = 4,\] then \[x + \frac{1}{x}\] =
If \[x = \frac{\sqrt{5} + \sqrt{3}}{\sqrt{5} - \sqrt{3}}\] and \[y = \frac{\sqrt{5} - \sqrt{3}}{\sqrt{5} + \sqrt{3}}\] then x + y +xy=
The value of \[\frac{\sqrt{48} + \sqrt{32}}{\sqrt{27} + \sqrt{18}}\] is
Find:-
`32^(2/5)`
Simplify:
`11^(1/2)/11^(1/4)`