Advertisements
Advertisements
प्रश्न
Prove that:
`(x^a/x^b)^cxx(x^b/x^c)^axx(x^c/x^a)^b=1`
उत्तर
Consider the left hand side:
`(x^a/x^b)^cxx(x^b/x^c)^axx(x^c/x^a)^b=1`
`=x^(ac)/x^(bc)xxx^(ba)/x^(ca)xxx^(cb)/x^(ab)`
`=(x^(ac)xxx^(ba)xxx^(cb))/(x^(bc)xxx^(ca)xxx^(ab))`
`=x^(ac+ba+cb)/x^(bc+ca+ab)`
= 1
Left hand side is equal to right hand side.
Hence proved.
APPEARS IN
संबंधित प्रश्न
If abc = 1, show that `1/(1+a+b^-1)+1/(1+b+c^-1)+1/(1+c+a^-1)=1`
Solve the following equation for x:
`2^(3x-7)=256`
Simplify:
`(sqrt2/5)^8div(sqrt2/5)^13`
Prove that:
`sqrt(3xx5^-3)divroot3(3^-1)sqrt5xxroot6(3xx5^6)=3/5`
Show that:
`(a^(x+1)/a^(y+1))^(x+y)(a^(y+2)/a^(z+2))^(y+z)(a^(z+3)/a^(x+3))^(z+x)=1`
If `3^(x+1)=9^(x-2),` find the value of `2^(1+x)`
Solve the following equation:
`4^(x-1)xx(0.5)^(3-2x)=(1/8)^x`
Write \[\left( 625 \right)^{- 1/4}\] in decimal form.
\[\frac{5^{n + 2} - 6 \times 5^{n + 1}}{13 \times 5^n - 2 \times 5^{n + 1}}\] is equal to
If `a = 2 + sqrt(3)`, then find the value of `a - 1/a`.