Advertisements
Advertisements
प्रश्न
Assuming that x, y, z are positive real numbers, simplify the following:
`(x^((-2)/3)y^((-1)/2))^2`
उत्तर
We have to simplify the following, assuming that x, y, z are positive real numbers
Given `(x^((-2)/3)y^((-1)/2))^2`
As x and y are positive real numbers then we have
`(x^((-2)/3)y^((-1)/2))^2=(x^((-2)/3)xxx^((-2)/3)xxy^((-1)/2)xxy^((-1)/2))`
By using law of rational exponents `a^-n=1/a^n` we have
`(x^((-2)/3)y^((-1)/2))^2=1/x^(2/3)xx1/x^(2/3)xx1/y^(1/2)xx1/y^(1/2)`
`(x^((-2)/3)y^((-1)/2))^2=1/(x^(2/3)xx x^(2/3))xx1/(y^(1/2)xxy^(1/2))`
By using law of rational exponents `a^m xx a^n=a^(m+n)` we have
`(x^((-2)/3)y^((-1)/2))^2=1/x^(2/3+2/3)xx1/y^(1/2+1/2)`
`=1/x^(4/3)xx1/y^(2/2)`
`=1/x^(4/3)xx1/y`
`=1/(x^(4/3)y)`
Hence the simplified value of `(x^((-2)/3)y^((-1)/2))^2` is `1/(x^(4/3)y)`
APPEARS IN
संबंधित प्रश्न
Solve the following equation for x:
`2^(x+1)=4^(x-3)`
Given `4725=3^a5^b7^c,` find
(i) the integral values of a, b and c
(ii) the value of `2^-a3^b7^c`
Assuming that x, y, z are positive real numbers, simplify the following:
`sqrt(x^3y^-2)`
Prove that:
`sqrt(3xx5^-3)divroot3(3^-1)sqrt5xxroot6(3xx5^6)=3/5`
Show that:
`(x^(1/(a-b)))^(1/(a-c))(x^(1/(b-c)))^(1/(b-a))(x^(1/(c-a)))^(1/(c-b))=1`
The value of x − yx-y when x = 2 and y = −2 is
`(2/3)^x (3/2)^(2x)=81/16 `then x =
If \[\frac{5 - \sqrt{3}}{2 + \sqrt{3}} = x + y\sqrt{3}\] , then
If \[x = \sqrt{6} + \sqrt{5}\],then \[x^2 + \frac{1}{x^2} - 2 =\]
If \[\sqrt{13 - a\sqrt{10}} = \sqrt{8} + \sqrt{5}, \text { then a } =\]