Advertisements
Advertisements
प्रश्न
If \[\sqrt{13 - a\sqrt{10}} = \sqrt{8} + \sqrt{5}, \text { then a } =\]
विकल्प
−5
−6
−4
−2
उत्तर
Given that:`sqrt(13- a sqrt10)= sqrt8 +sqrt5`
We need to find a
The given expression can be simplified by taking square on both sides
`(sqrt(13- a sqrt10)^2)= (sqrt8 +sqrt5)^2`
`13-asqrt10 = (sqrt8)^2 +(sqrt5)^2 + 2xx sqrt8xx sqrt5`
`= 8+ 5 +2sqrt40`
The irrational terms on right side can be factorized such that it of the same form as left side terms.
Hence,
`13 - asqrt10 = 13 +2 sqrt4 sqrt10`
` =13+2xx2xxsqrt10`
`= 13+4sqrt10.`
On comparing rational and irrational terms, we get `a=-4`.
APPEARS IN
संबंधित प्रश्न
Assuming that x, y, z are positive real numbers, simplify the following:
`(x^-4/y^-10)^(5/4)`
Simplify:
`(0.001)^(1/3)`
Find the value of x in the following:
`5^(2x+3)=1`
Determine `(8x)^x,`If `9^(x+2)=240+9^x`
Solve the following equation:
`4^(2x)=(root3 16)^(-6/y)=(sqrt8)^2`
Simplify:
`root(lm)(x^l/x^m)xxroot(mn)(x^m/x^n)xxroot(nl)(x^n/x^l)`
When simplified \[( x^{- 1} + y^{- 1} )^{- 1}\] is equal to
If \[\frac{2^{m + n}}{2^{n - m}} = 16\], \[\frac{3^p}{3^n} = 81\] and \[a = 2^{1/10}\],than \[\frac{a^{2m + n - p}}{( a^{m - 2n + 2p} )^{- 1}} =\]
If 10x = 64, what is the value of \[{10}^\frac{x}{2} + 1 ?\]
If \[x = 7 + 4\sqrt{3}\] and xy =1, then \[\frac{1}{x^2} + \frac{1}{y^2} =\]