Advertisements
Advertisements
प्रश्न
If \[\frac{5 - \sqrt{3}}{2 + \sqrt{3}} = x + y\sqrt{3}\] , then
पर्याय
x = 13, y = −7
x = −13, y = 7
x = −13, y =- 7
x = 13, y = 7
उत्तर
Given that:`(5-sqrt3)/(2+sqrt3) = x+ysqrt3`We need to find x and y
We know that rationalization factor for `2+sqrt3` is`2-sqrt3` . We will multiply numerator and denominator of the given expression `(5-sqrt3)/(2+sqrt3)`by, 2-sqrt3` to get
`(5-sqrt3)/(2+sqrt3) xx (2-sqrt3)/(2-sqrt2) = (5 xx 2 - 5 xx sqrt3 - 2 xx sqrt3 +(sqrt3)^3)/((2)^2 - (sqrt3)^2)`
` (10-5sqrt3 - 2 sqrt3 +3)/((2)^2 -(sqrt3)^2)`
` = (13-7sqrt3) /(4-3)`
` = 13 - 7sqrt3.`
Since ` x + y sqrt3 = 13 - 7 sqrt3`
On equating rational and irrational terms, we get `x=13 and y= -7`
APPEARS IN
संबंधित प्रश्न
Prove that:
`1/(1+x^(a-b))+1/(1+x^(b-a))=1`
Simplify the following:
`(6(8)^(n+1)+16(2)^(3n-2))/(10(2)^(3n+1)-7(8)^n)`
Solve the following equation for x:
`2^(3x-7)=256`
If `1176=2^a3^b7^c,` find a, b and c.
Show that:
`{(x^(a-a^-1))^(1/(a-1))}^(a/(a+1))=x`
Show that:
`(3^a/3^b)^(a+b)(3^b/3^c)^(b+c)(3^c/3^a)^(c+a)=1`
If `3^(4x) = (81)^-1` and `10^(1/y)=0.0001,` find the value of ` 2^(-x+4y)`.
Solve the following equation:
`3^(x-1)xx5^(2y-3)=225`
Simplify:
`(x^(a+b)/x^c)^(a-b)(x^(b+c)/x^a)^(b-c)(x^(c+a)/x^b)^(c-a)`
State the power law of exponents.