Advertisements
Advertisements
प्रश्न
Solve the following equation:
`3^(x-1)xx5^(2y-3)=225`
उत्तर
`3^(x-1)xx5^(2y-3)=225`
`rArr3^(x-1)xx5^(2y-3)=3xx3xx5xx5`
`rArr3^(x-1)xx5^(2y-3)=3^2xx5^2`
⇒ x - 1 = 2 and 2y - 3 = 2
⇒ x = 2 + 1 and 2y = 2 + 3
⇒ x = 3 and 2y = 5
⇒ x = 3 and y = 5/2
APPEARS IN
संबंधित प्रश्न
Simplify:
`((5^-1xx7^2)/(5^2xx7^-4))^(7/2)xx((5^-2xx7^3)/(5^3xx7^-5))^(-5/2)`
Prove that:
`sqrt(3xx5^-3)divroot3(3^-1)sqrt5xxroot6(3xx5^6)=3/5`
Prove that:
`(3^-3xx6^2xxsqrt98)/(5^2xxroot3(1/25)xx(15)^(-4/3)xx3^(1/3))=28sqrt2`
Find the value of x in the following:
`(2^3)^4=(2^2)^x`
Find the value of x in the following:
`5^(x-2)xx3^(2x-3)=135`
State the product law of exponents.
Which one of the following is not equal to \[\left( \frac{100}{9} \right)^{- 3/2}\]?
If x= \[\frac{\sqrt{3} - \sqrt{2}}{\sqrt{3} + \sqrt{2}}\] and y = \[\frac{\sqrt{3} + \sqrt{2}}{\sqrt{3} - \sqrt{2}}\] , then x2 + y +y2 =
Find:-
`32^(2/5)`
If `a = 2 + sqrt(3)`, then find the value of `a - 1/a`.