Advertisements
Advertisements
प्रश्न
Which one of the following is not equal to \[\left( \frac{100}{9} \right)^{- 3/2}\]?
पर्याय
\[\left( \frac{9}{100} \right)^{3/2}\]
\[\left( \frac{1}{\frac{100}{9}} \right)^{3/2}\]
\[\frac{3}{10} \times \frac{3}{10} \times \frac{3}{10}\]
\[\sqrt{\frac{100}{9}} \times \sqrt{\frac{100}{9}} \times \sqrt{\frac{100}{9}}\]
उत्तर
We have to find the value of `((100)/9)^(3/2)`
So,
`((100)/9)^(-3/2) = ((10^2)/3^2)^(-3/2`
`=(10^(2xx 3/2))/(3^(2xx 3/2))`
`= (10^(2xx 3/2))/(3^(2xx 3/2))`
`= 10^-3/3^-3`
`((100)/9)^(3/2) = (1/10^3)/(1/3^3)`
`=1/(10 xx 10 xx 10) xx (3xx3xx3)/1`
`= (3xx3xx3)/(10xx10xx10)`
Since, `(100/9)^(3/2)` is equal to `(9/100)^(3/2)`,, `1/((100/9)^(3/2))` `(3xx3xx3)/(10xx 10xx10)`.
APPEARS IN
संबंधित प्रश्न
Assuming that x, y, z are positive real numbers, simplify the following:
`(x^-4/y^-10)^(5/4)`
If a and b are distinct primes such that `root3 (a^6b^-4)=a^xb^(2y),` find x and y.
If 3x-1 = 9 and 4y+2 = 64, what is the value of \[\frac{x}{y}\] ?
Write \[\left( \frac{1}{9} \right)^{- 1/2} \times (64 )^{- 1/3}\] as a rational number.
The value of \[\left\{ 2 - 3 (2 - 3 )^3 \right\}^3\] is
The value of x − yx-y when x = 2 and y = −2 is
If \[x + \sqrt{15} = 4,\] then \[x + \frac{1}{x}\] =
If x= \[\frac{\sqrt{3} - \sqrt{2}}{\sqrt{3} + \sqrt{2}}\] and y = \[\frac{\sqrt{3} + \sqrt{2}}{\sqrt{3} - \sqrt{2}}\] , then x2 + y +y2 =
Find:-
`125^((-1)/3)`
Simplify:
`7^(1/2) . 8^(1/2)`