Advertisements
Advertisements
Question
Which one of the following is not equal to \[\left( \frac{100}{9} \right)^{- 3/2}\]?
Options
\[\left( \frac{9}{100} \right)^{3/2}\]
\[\left( \frac{1}{\frac{100}{9}} \right)^{3/2}\]
\[\frac{3}{10} \times \frac{3}{10} \times \frac{3}{10}\]
\[\sqrt{\frac{100}{9}} \times \sqrt{\frac{100}{9}} \times \sqrt{\frac{100}{9}}\]
Solution
We have to find the value of `((100)/9)^(3/2)`
So,
`((100)/9)^(-3/2) = ((10^2)/3^2)^(-3/2`
`=(10^(2xx 3/2))/(3^(2xx 3/2))`
`= (10^(2xx 3/2))/(3^(2xx 3/2))`
`= 10^-3/3^-3`
`((100)/9)^(3/2) = (1/10^3)/(1/3^3)`
`=1/(10 xx 10 xx 10) xx (3xx3xx3)/1`
`= (3xx3xx3)/(10xx10xx10)`
Since, `(100/9)^(3/2)` is equal to `(9/100)^(3/2)`,, `1/((100/9)^(3/2))` `(3xx3xx3)/(10xx 10xx10)`.
APPEARS IN
RELATED QUESTIONS
If a = 3 and b = -2, find the values of :
(a + b)ab
Simplify the following:
`(3^nxx9^(n+1))/(3^(n-1)xx9^(n-1))`
Solve the following equation for x:
`2^(3x-7)=256`
Solve the following equations for x:
`2^(2x)-2^(x+3)+2^4=0`
Prove that:
`9^(3/2)-3xx5^0-(1/81)^(-1/2)=15`
Show that:
`(x^(a-b))^(a+b)(x^(b-c))^(b+c)(x^(c-a))^(c+a)=1`
Find the value of x in the following:
`(root3 4)^(2x+1/2)=1/32`
Write the value of \[\left\{ 5( 8^{1/3} + {27}^{1/3} )^3 \right\}^{1/4} . \]
If x= \[\frac{\sqrt{3} - \sqrt{2}}{\sqrt{3} + \sqrt{2}}\] and y = \[\frac{\sqrt{3} + \sqrt{2}}{\sqrt{3} - \sqrt{2}}\] , then x2 + y +y2 =
Find:-
`32^(2/5)`