Advertisements
Advertisements
Question
Prove that:
`9^(3/2)-3xx5^0-(1/81)^(-1/2)=15`
Solution
we have to prove that `9^(3/2)-3xx5^0-(1/81)^(-1/2)=15`
`9^(3/2)-3xx5^0-(1/81)^(-1/2)=3^(2xx3/2)-3xx5^0-1/81^(-1/2)`
`=3^3-3xx1-1/(1/sqrt81)`
`=3^3-3-1/(1/root2(9xx9))`
`=27-3-1/(1/9)`
`=27-3-1xx9/1`
= 27 - 12
= 15
Hence `9^(3/2)-3xx5^0-(1/81)^(-1/2)=15`
APPEARS IN
RELATED QUESTIONS
Prove that:
`(a^-1+b^-1)^-1=(ab)/(a+b)`
Simplify:
`((25)^(3/2)xx(243)^(3/5))/((16)^(5/4)xx(8)^(4/3))`
State the product law of exponents.
Write \[\left( \frac{1}{9} \right)^{- 1/2} \times (64 )^{- 1/3}\] as a rational number.
When simplified \[\left( - \frac{1}{27} \right)^{- 2/3}\] is
The value of \[\left\{ 8^{- 4/3} \div 2^{- 2} \right\}^{1/2}\] is
If x = \[\sqrt[3]{2 + \sqrt{3}}\] , then \[x^3 + \frac{1}{x^3} =\]
If \[x = \sqrt{6} + \sqrt{5}\],then \[x^2 + \frac{1}{x^2} - 2 =\]
Find:-
`32^(2/5)`
Simplify:
`(1^3 + 2^3 + 3^3)^(1/2)`