Advertisements
Advertisements
Question
Prove that:
`sqrt(3xx5^-3)divroot3(3^-1)sqrt5xxroot6(3xx5^6)=3/5`
Solution
we have to prove that `sqrt(3xx5^-3)/(root3(3^-1)sqrt5)xxroot6(3xx5^6)=3/5`
By using rational exponents `a^-n=1/a^n` we get,
`sqrt(3xx5^-3)/(root3(3^-1)sqrt5)xxroot6(3xx5^6)=sqrt(3xx1/5^3)/(root3(1/3)sqrt5)xxroot6(3xx5^6)`
`=(3^(1/2)xx1/5^(3xx1/2))/(1/3^(1/3)xx5^(1/2))xx3^(1/6)xx5^(6xx1/6)`
`=(3^(1/2)/5^(3/2))/(5^(1/2)/3^(1/3))xx3^(1/6)xx5^1`
`=3^(1/2)/5^(3/2)xx3^(1/3)/5^(1/2)xx3^(1/6)xx5^1`
`=3^(1/2)xx3^(1/3)xx5^(-3/2)xx5^(-1/2)xx3^(1/6)xx5^1`
`=3^(1/2+1/3+1/6)xx5^(-3/2-1/2+1)`
`=3^((1xx3)/(2xx3)+(1xx2)/(3xx2)+1/6)xx5^(-3/2-1/2+(1xx2)/(1xx2))`
`=3^((3+2+1)/6)xx5^((-3-1+2)/2)`
`=3^1xx5^-1`
`=3xx1/5`
`=3/5`
Hence `sqrt(3xx5^-3)/(root3(3^-1)sqrt5)xxroot6(3xx5^6)=3/5`
APPEARS IN
RELATED QUESTIONS
Simplify the following
`(2x^-2y^3)^3`
Simplify the following
`((x^2y^2)/(a^2b^3))^n`
Assuming that x, y, z are positive real numbers, simplify the following:
`sqrt(x^3y^-2)`
Prove that:
`(3^-3xx6^2xxsqrt98)/(5^2xxroot3(1/25)xx(15)^(-4/3)xx3^(1/3))=28sqrt2`
Find the value of x in the following:
`(3/5)^x(5/3)^(2x)=125/27`
If `x=2^(1/3)+2^(2/3),` Show that x3 - 6x = 6
If a and b are different positive primes such that
`((a^-1b^2)/(a^2b^-4))^7div((a^3b^-5)/(a^-2b^3))=a^xb^y,` find x and y.
If (x − 1)3 = 8, What is the value of (x + 1)2 ?
If 102y = 25, then 10-y equals
If o <y <x, which statement must be true?