English

Prove That: `(3^-3xx6^2xxsqrt98)/(5^2xxroot3(1/25)Xx(15)^(-4/3)Xx3^(1/3))=28sqrt2` - Mathematics

Advertisements
Advertisements

Question

Prove that:

`(3^-3xx6^2xxsqrt98)/(5^2xxroot3(1/25)xx(15)^(-4/3)xx3^(1/3))=28sqrt2`

Solution

We have to prove that `(3^-3xx6^2xxsqrt98)/(5^2xxroot3(1/25)xx(15)^(-4/3)xx3^(1/3))=28sqrt2`

Let x = `(3^-3xx6^2xxsqrt98)/(5^2xxroot3(1/25)xx(15)^(-4/3)xx3^(1/3))`

`=(3^-3xx3^2xx2^2xxsqrt(7xx7xx2))/(5^2xxroot3(1/25)xx(15)^-(4/3)xx3^(1/3))`

`=(3^(-3+2)xx2^2xx7sqrt2)/(5^2xx1/5^(2xx1/3)xx5^(-4/3)xx3^(-4/3)xx3^(1/3))`

`=(3^-1xx2^2xx7sqrt2)/(5^2/1xx1/5^(2/3)xx1/5^(4/3)xx1/3^(4/3)xx3^(1/3)/1)`

`=3^-1xx2^2xx7sqrt2xx1/5^2xx5^(2/3)xx5^(4/3)xx3^(4/3)xx1/3^(1/3)`

`=3^-1xx3^(4/3)xx1/3^(1/3)xx4xx7sqrt2xx1/5^2xx5^(2/3)xx5^(4/3)`

`=3^(-1+4/3-1/3)xx4xx7sqrt2xx5^(-2+2/3+4/3)`

`=3^((-1xx3)/(1xx3)+4/3-1/3)xx28sqrt2xx5^((-2xx3)/(1xx3)+2/3+4/3)`

`=3^((-3+4-1)/3)xx28sqrt2xx5^((-6+2+4)/3)`

`=3^0xx28sqrt2xx5^0`

`=1xx28sqrt2xx1`

`=28sqrt2`

Hence, `(3^-3xx6^2xxsqrt98)/(5^2xxroot3(1/25)xx(15)^(-4/3)xx3^(1/3))=28sqrt2`

shaalaa.com
  Is there an error in this question or solution?
Chapter 2: Exponents of Real Numbers - Exercise 2.2 [Page 24]

APPEARS IN

RD Sharma Mathematics [English] Class 9
Chapter 2 Exponents of Real Numbers
Exercise 2.2 | Q 3.8 | Page 24

Video TutorialsVIEW ALL [1]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×