Advertisements
Advertisements
Question
Prove that:
`(3^-3xx6^2xxsqrt98)/(5^2xxroot3(1/25)xx(15)^(-4/3)xx3^(1/3))=28sqrt2`
Solution
We have to prove that `(3^-3xx6^2xxsqrt98)/(5^2xxroot3(1/25)xx(15)^(-4/3)xx3^(1/3))=28sqrt2`
Let x = `(3^-3xx6^2xxsqrt98)/(5^2xxroot3(1/25)xx(15)^(-4/3)xx3^(1/3))`
`=(3^-3xx3^2xx2^2xxsqrt(7xx7xx2))/(5^2xxroot3(1/25)xx(15)^-(4/3)xx3^(1/3))`
`=(3^(-3+2)xx2^2xx7sqrt2)/(5^2xx1/5^(2xx1/3)xx5^(-4/3)xx3^(-4/3)xx3^(1/3))`
`=(3^-1xx2^2xx7sqrt2)/(5^2/1xx1/5^(2/3)xx1/5^(4/3)xx1/3^(4/3)xx3^(1/3)/1)`
`=3^-1xx2^2xx7sqrt2xx1/5^2xx5^(2/3)xx5^(4/3)xx3^(4/3)xx1/3^(1/3)`
`=3^-1xx3^(4/3)xx1/3^(1/3)xx4xx7sqrt2xx1/5^2xx5^(2/3)xx5^(4/3)`
`=3^(-1+4/3-1/3)xx4xx7sqrt2xx5^(-2+2/3+4/3)`
`=3^((-1xx3)/(1xx3)+4/3-1/3)xx28sqrt2xx5^((-2xx3)/(1xx3)+2/3+4/3)`
`=3^((-3+4-1)/3)xx28sqrt2xx5^((-6+2+4)/3)`
`=3^0xx28sqrt2xx5^0`
`=1xx28sqrt2xx1`
`=28sqrt2`
Hence, `(3^-3xx6^2xxsqrt98)/(5^2xxroot3(1/25)xx(15)^(-4/3)xx3^(1/3))=28sqrt2`
APPEARS IN
RELATED QUESTIONS
Simplify the following
`3(a^4b^3)^10xx5(a^2b^2)^3`
Simplify the following
`(4ab^2(-5ab^3))/(10a^2b^2)`
Prove that:
`(x^a/x^b)^cxx(x^b/x^c)^axx(x^c/x^a)^b=1`
Solve the following equation for x:
`4^(x-1)xx(0.5)^(3-2x)=(1/8)^x`
Assuming that x, y, z are positive real numbers, simplify the following:
`sqrt(x^3y^-2)`
Find the value of x in the following:
`2^(x-7)xx5^(x-4)=1250`
Write the value of \[\sqrt[3]{7} \times \sqrt[3]{49} .\]
The value of \[\left\{ 2 - 3 (2 - 3 )^3 \right\}^3\] is
If (16)2x+3 =(64)x+3, then 42x-2 =
The value of \[\sqrt{5 + 2\sqrt{6}}\] is