Advertisements
Advertisements
प्रश्न
Prove that:
`sqrt(3xx5^-3)divroot3(3^-1)sqrt5xxroot6(3xx5^6)=3/5`
उत्तर
we have to prove that `sqrt(3xx5^-3)/(root3(3^-1)sqrt5)xxroot6(3xx5^6)=3/5`
By using rational exponents `a^-n=1/a^n` we get,
`sqrt(3xx5^-3)/(root3(3^-1)sqrt5)xxroot6(3xx5^6)=sqrt(3xx1/5^3)/(root3(1/3)sqrt5)xxroot6(3xx5^6)`
`=(3^(1/2)xx1/5^(3xx1/2))/(1/3^(1/3)xx5^(1/2))xx3^(1/6)xx5^(6xx1/6)`
`=(3^(1/2)/5^(3/2))/(5^(1/2)/3^(1/3))xx3^(1/6)xx5^1`
`=3^(1/2)/5^(3/2)xx3^(1/3)/5^(1/2)xx3^(1/6)xx5^1`
`=3^(1/2)xx3^(1/3)xx5^(-3/2)xx5^(-1/2)xx3^(1/6)xx5^1`
`=3^(1/2+1/3+1/6)xx5^(-3/2-1/2+1)`
`=3^((1xx3)/(2xx3)+(1xx2)/(3xx2)+1/6)xx5^(-3/2-1/2+(1xx2)/(1xx2))`
`=3^((3+2+1)/6)xx5^((-3-1+2)/2)`
`=3^1xx5^-1`
`=3xx1/5`
`=3/5`
Hence `sqrt(3xx5^-3)/(root3(3^-1)sqrt5)xxroot6(3xx5^6)=3/5`
APPEARS IN
संबंधित प्रश्न
If a = 3 and b = -2, find the values of :
(a + b)ab
Prove that:
`(x^a/x^b)^cxx(x^b/x^c)^axx(x^c/x^a)^b=1`
Simplify the following:
`(5xx25^(n+1)-25xx5^(2n))/(5xx5^(2n+3)-25^(n+1))`
Simplify the following:
`(6(8)^(n+1)+16(2)^(3n-2))/(10(2)^(3n+1)-7(8)^n)`
Solve the following equation for x:
`2^(5x+3)=8^(x+3)`
Assuming that x, y, z are positive real numbers, simplify the following:
`(sqrtx)^((-2)/3)sqrt(y^4)divsqrt(xy^((-1)/2))`
Show that:
`1/(1+x^(a-b))+1/(1+x^(b-a))=1`
If `3^(x+1)=9^(x-2),` find the value of `2^(1+x)`
If \[\frac{x}{x^{1 . 5}} = 8 x^{- 1}\] and x > 0, then x =
If g = `t^(2/3) + 4t^(-1/2)`, what is the value of g when t = 64?