Advertisements
Advertisements
प्रश्न
If \[\frac{x}{x^{1 . 5}} = 8 x^{- 1}\] and x > 0, then x =
पर्याय
\[\frac{\sqrt{2}}{4}\]
\[\sqrt[2]{2}\]
4
64
उत्तर
For `x /(x^1.5) = 8x^-1`, we have to find the value of x.
So,
`x^1 /(x^1.5) = 8x^-1`
`x ^(1-1.5) = 8x^-1`
`x ^(-0.5) = 2^3x^-1`
`(x^0.5) /x^-1= 2^3`
`x^(-5/10) /x^-1= 2^3`
`x^(-1/2+1)= 2^3`
`x^(-1/2+2/2)= 2^3`
`x^((-1+2)/2) = 2^3`
`x^(1/2) = 2^3`
By raising both sides to the power 2 we get
`x^(1/2xx2) = 2 ^(3xx2)`
`x^(1/2xx2) = 2 ^6`
`x^1 = 64`
The value of x is 64.
APPEARS IN
संबंधित प्रश्न
If abc = 1, show that `1/(1+a+b^-1)+1/(1+b+c^-1)+1/(1+c+a^-1)=1`
Simplify the following:
`(3^nxx9^(n+1))/(3^(n-1)xx9^(n-1))`
Simplify:
`((25)^(3/2)xx(243)^(3/5))/((16)^(5/4)xx(8)^(4/3))`
Determine `(8x)^x,`If `9^(x+2)=240+9^x`
If (23)2 = 4x, then 3x =
If \[\sqrt{5^n} = 125\] then `5nsqrt64`=
If \[x + \sqrt{15} = 4,\] then \[x + \frac{1}{x}\] =
If \[\sqrt{2} = 1 . 414,\] then the value of \[\sqrt{6} - \sqrt{3}\] upto three places of decimal is
If \[\sqrt{13 - a\sqrt{10}} = \sqrt{8} + \sqrt{5}, \text { then a } =\]
Simplify:
`7^(1/2) . 8^(1/2)`