Advertisements
Advertisements
प्रश्न
If (23)2 = 4x, then 3x =
पर्याय
3
6
9
27
उत्तर
We have to find the value of `3^x`provided `(2^3)^2 = 4`
So,
`2^(3xx 2) = 2^(2x)`
`2^6 = 2^(2x)`
By equating the exponents we get
`6=2x`
`6/2 = x`
`3=x`
By substituting in `3^x`we get
`3^x = 3^3`
`=27`
The value of`3^x` is 27
APPEARS IN
संबंधित प्रश्न
If a = 3 and b = -2, find the values of :
aa + bb
Prove that:
`sqrt(3xx5^-3)divroot3(3^-1)sqrt5xxroot6(3xx5^6)=3/5`
Find the value of x in the following:
`(13)^(sqrtx)=4^4-3^4-6`
Find the value of x in the following:
`(sqrt(3/5))^(x+1)=125/27`
If a and b are different positive primes such that
`((a^-1b^2)/(a^2b^-4))^7div((a^3b^-5)/(a^-2b^3))=a^xb^y,` find x and y.
If 24 × 42 =16x, then find the value of x.
The value of \[\left\{ \left( 23 + 2^2 \right)^{2/3} + (140 - 19 )^{1/2} \right\}^2 ,\] is
If 9x+2 = 240 + 9x, then x =
\[\frac{5^{n + 2} - 6 \times 5^{n + 1}}{13 \times 5^n - 2 \times 5^{n + 1}}\] is equal to
Simplify:
`7^(1/2) . 8^(1/2)`