Advertisements
Advertisements
प्रश्न
Find the value of x in the following:
`(13)^(sqrtx)=4^4-3^4-6`
उत्तर
Given `(13)^(sqrtx)=4^4-3^4-6`
`(13)^(sqrtx)=(2^2)^4-3^4-6`
`rArr(13)^(sqrtx)=2^8-3^4-6`
`rArr(13)^sqrtx=256-81-6`
`rArr(13)^sqrtx=169`
`rArr(13)^sqrtx=(13)^2`
On comparing we get,
`sqrtx=2`
On squaring both side we get,
x = 4
Hence, the value of x = 4.
APPEARS IN
संबंधित प्रश्न
Show that:
`(x^(1/(a-b)))^(1/(a-c))(x^(1/(b-c)))^(1/(b-a))(x^(1/(c-a)))^(1/(c-b))=1`
State the quotient law of exponents.
If 24 × 42 =16x, then find the value of x.
Write the value of \[\sqrt[3]{125 \times 27}\].
Write the value of \[\left\{ 5( 8^{1/3} + {27}^{1/3} )^3 \right\}^{1/4} . \]
If \[\frac{x}{x^{1 . 5}} = 8 x^{- 1}\] and x > 0, then x =
If \[\sqrt{2^n} = 1024,\] then \[{3^2}^\left( \frac{n}{4} - 4 \right) =\]
The value of \[\frac{\sqrt{48} + \sqrt{32}}{\sqrt{27} + \sqrt{18}}\] is
The value of \[\sqrt{3 - 2\sqrt{2}}\] is
The positive square root of \[7 + \sqrt{48}\] is