मराठी

Show That: `(X^(1/(A-b)))^(1/(A-c))(X^(1/(B-c)))^(1/(B-a))(X^(1/(C-a)))^(1/(C-b))=1` - Mathematics

Advertisements
Advertisements

प्रश्न

Show that:

`(x^(1/(a-b)))^(1/(a-c))(x^(1/(b-c)))^(1/(b-a))(x^(1/(c-a)))^(1/(c-b))=1`

उत्तर

`(x^(1/(a-b)))^(1/(a-c))(x^(1/(b-c)))^(1/(b-a))(x^(1/(c-a)))^(1/(c-b))=1`

LHS = `(x^(1/(a-b)))^(1/(a-c))(x^(1/(b-c)))^(1/(b-a))(x^(1/(c-a)))^(1/(c-b))`

`=(x)^(1/(a-b)xx1/(a-c))(x)^(1/(b-c)xx1/(b-a))(x)^(1/(c-a)xx1/(c-b))`

`=(x)^(1/(a-b)xx1/(a-c)+1/(b-c)xx1/(b-a)+1/(c-a)xx1/(c-b))`

`=(x)^(((b-c)-(a-c)+(a-b))/((a-b)(a-c)(b-c)))`

`=x^0`

= 1

= RHS

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 2: Exponents of Real Numbers - Exercise 2.2 [पृष्ठ २५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 9
पाठ 2 Exponents of Real Numbers
Exercise 2.2 | Q 4.3 | पृष्ठ २५

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×