Advertisements
Advertisements
प्रश्न
Show that:
`[{x^(a(a-b))/x^(a(a+b))}div{x^(b(b-a))/x^(b(b+a))}]^(a+b)=1`
उत्तर
`[{x^(a(a-b))/x^(a(a+b))}div{x^(b(b-a))/x^(b(b+a))}]^(a+b)=1`
LHS = `[{x^(a(a-b))/x^(a(a+b))}div{x^(b(b-a))/x^(b(b+a))}]^(a+b)`
`=[{x^(a(a-b))/x^(a(a+b))}xx{x^(b(b+a))/x^(b(b-a))}]^(a+b)`
`=[{x^(a^2-ab)/x^(a^2+ab)}xx{x^(b^2+ab)/x^(b^2-ab)}]^(a+b)`
`=[{x^(a^2-ab-a^2-ab)}xx{x^(b^2+ab-b^2+ab)}]^(a+b)`
`=[x^(-2ab)xx x^(2ab)]^(a+b)`
`=[x^(-2ab+2ab)]^(a+b)`
`=[x^0]^(a+b)`
= 1
= RHS
APPEARS IN
संबंधित प्रश्न
Prove that:
`1/(1+x^(a-b))+1/(1+x^(b-a))=1`
If 49392 = a4b2c3, find the values of a, b and c, where a, b and c are different positive primes.
If `1176=2^a3^b7^c,` find a, b and c.
Given `4725=3^a5^b7^c,` find
(i) the integral values of a, b and c
(ii) the value of `2^-a3^b7^c`
Simplify:
`(sqrt2/5)^8div(sqrt2/5)^13`
Find the value of x in the following:
`(13)^(sqrtx)=4^4-3^4-6`
Write \[\left( 625 \right)^{- 1/4}\] in decimal form.
If 3x-1 = 9 and 4y+2 = 64, what is the value of \[\frac{x}{y}\] ?
If \[\frac{3^{2x - 8}}{225} = \frac{5^3}{5^x},\] then x =
Simplify:-
`(1/3^3)^7`