Advertisements
Advertisements
प्रश्न
If x = \[\frac{2}{3 + \sqrt{7}}\],then (x−3)2 =
पर्याय
1
3
6
7
उत्तर
Given that: `x=2/(3+sqrt7)`
We know that rationalization factor for `3+sqrt7` is .`3-sqrt7` We will multiply numerator and denominator of the given expression `2/(3+sqrt7)` by `3 - sqrt7`, to get
`x = 2/(3+sqrt7) xx (3-sqrt7)/ (3-sqrt7)`
`= (2(3-sqrt7))/((3)^2 - (sqrt7)^2)`
`= (2(3-sqrt7))/(9-7) `
`= 3 - sqrt7`
Therefore,
`x-3 =-sqrt7`
On squaring both sides, we get
`(x-3)^2 = 7`
APPEARS IN
संबंधित प्रश्न
Simplify:-
`2^(2/3). 2^(1/5)`
Prove that:
`(a+b+c)/(a^-1b^-1+b^-1c^-1+c^-1a^-1)=abc`
Simplify the following:
`(5xx25^(n+1)-25xx5^(2n))/(5xx5^(2n+3)-25^(n+1))`
Solve the following equation for x:
`7^(2x+3)=1`
Prove that:
`(2^(1/2)xx3^(1/3)xx4^(1/4))/(10^(-1/5)xx5^(3/5))div(3^(4/3)xx5^(-7/5))/(4^(-3/5)xx6)=10`
If `5^(3x)=125` and `10^y=0.001,` find x and y.
Solve the following equation:
`8^(x+1)=16^(y+2)` and, `(1/2)^(3+x)=(1/4)^(3y)`
Write \[\left( \frac{1}{9} \right)^{- 1/2} \times (64 )^{- 1/3}\] as a rational number.
If x = 2 and y = 4, then \[\left( \frac{x}{y} \right)^{x - y} + \left( \frac{y}{x} \right)^{y - x} =\]
The value of 64-1/3 (641/3-642/3), is