Advertisements
Advertisements
प्रश्न
If \[8^{x + 1}\] = 64 , what is the value of \[3^{2x + 1}\] ?
पर्याय
1
3
9
27
उत्तर
We have to find the value of `3^2x+1` provided `8^((x+1) = 64)`
So,
`2^(3(x+1)) = 64`
`2^(3x+3) = 2^6`
Equating the exponents we get
`3x + 3= 6 `
`3x= 6-3`
`3x=3`
`x= 3/3`
x - 1
By substitute in `3^(2x+1)`we get
`3^(2 xx 1 +1)`
` = 3^(2+1)`
`= 3^3`
`= 27`
The real value of `3^(2x+1)` is 27
APPEARS IN
संबंधित प्रश्न
Simplify the following
`3(a^4b^3)^10xx5(a^2b^2)^3`
If a = 3 and b = -2, find the values of :
ab + ba
Simplify the following:
`(3^nxx9^(n+1))/(3^(n-1)xx9^(n-1))`
Solve the following equation for x:
`2^(3x-7)=256`
If `a=xy^(p-1), b=xy^(q-1)` and `c=xy^(r-1),` prove that `a^(q-r)b^(r-p)c^(p-q)=1`
Assuming that x, y, z are positive real numbers, simplify the following:
`(sqrtx)^((-2)/3)sqrt(y^4)divsqrt(xy^((-1)/2))`
Show that:
`(x^(a-b))^(a+b)(x^(b-c))^(b+c)(x^(c-a))^(c+a)=1`
If `27^x=9/3^x,` find x.
If `3^(4x) = (81)^-1` and `10^(1/y)=0.0001,` find the value of ` 2^(-x+4y)`.
If (16)2x+3 =(64)x+3, then 42x-2 =