Advertisements
Advertisements
प्रश्न
If `a=xy^(p-1), b=xy^(q-1)` and `c=xy^(r-1),` prove that `a^(q-r)b^(r-p)c^(p-q)=1`
उत्तर
It is given that `a=xy^(p-1), b=xy^(q-1)` and `c=xy^(r-1)`
`thereforea^(q-r)b^(r-p)c^(p-q)`
`=(xy^(p-1))^(q-r)(xy^(q-1))^(r-p)(xy^(r-1))^(p-q)`
`=x^((q-r))y^((p-1)(q-r))x^((r-p))y^((r-p)(q-1))x^((p-q))y^((p-q)(r-1))`
`=x^((q-r))x^((r-p))x^((p-q))y^((p-1)(q-r))y^((r-p)(q-1))y^((p-q)(r-1))`
`=x^((q-r)+(r-p)+(p-q))y^((p-1)(q-r)+(r-p)(q-1)+(p-q)(r-1))`
`=x^(q-r+r-p+p-q)y^(pq-q-pr+r+rq-r-pq+p+pr-p-qr+q)`
`=x^0y^0`
= 1
Hence proved.
APPEARS IN
संबंधित प्रश्न
Solve the following equation for x:
`2^(5x+3)=8^(x+3)`
Solve the following equation for x:
`4^(2x)=1/32`
Simplify:
`((25)^(3/2)xx(243)^(3/5))/((16)^(5/4)xx(8)^(4/3))`
Show that:
`(a^(x+1)/a^(y+1))^(x+y)(a^(y+2)/a^(z+2))^(y+z)(a^(z+3)/a^(x+3))^(z+x)=1`
Find the value of x in the following:
`5^(x-2)xx3^(2x-3)=135`
Find the value of x in the following:
`(root3 4)^(2x+1/2)=1/32`
If `a=x^(m+n)y^l, b=x^(n+l)y^m` and `c=x^(l+m)y^n,` Prove that `a^(m-n)b^(n-l)c^(l-m)=1`
The product of the square root of x with the cube root of x is
If \[\frac{3^{5x} \times {81}^2 \times 6561}{3^{2x}} = 3^7\] then x =
The positive square root of \[7 + \sqrt{48}\] is