Advertisements
Advertisements
प्रश्न
Find the value of x in the following:
`5^(x-2)xx3^(2x-3)=135`
उत्तर
Given `5^(x-2)xx3^(2x-3)=135`
`5^(x-2)xx3^(2x-3)=5xx3^3`
On equating the exponents of 5 and 3 we get,
x - 2 = 1
x = 1 + 2
x = 3
And,
2x - 3 = 3
2x = 3 + 3
2x = 6
x = 6/2
x = 3
Hence, the value of x = 3.
APPEARS IN
संबंधित प्रश्न
Simplify:
`((25)^(3/2)xx(243)^(3/5))/((16)^(5/4)xx(8)^(4/3))`
Simplify:
`((5^-1xx7^2)/(5^2xx7^-4))^(7/2)xx((5^-2xx7^3)/(5^3xx7^-5))^(-5/2)`
Show that:
`[{x^(a(a-b))/x^(a(a+b))}div{x^(b(b-a))/x^(b(b+a))}]^(a+b)=1`
Determine `(8x)^x,`If `9^(x+2)=240+9^x`
If `3^(4x) = (81)^-1` and `10^(1/y)=0.0001,` find the value of ` 2^(-x+4y)`.
If `5^(3x)=125` and `10^y=0.001,` find x and y.
Solve the following equation:
`sqrt(a/b)=(b/a)^(1-2x),` where a and b are distinct primes.
If 102y = 25, then 10-y equals
The simplest rationalising factor of \[\sqrt[3]{500}\] is
Simplify:
`7^(1/2) . 8^(1/2)`