Advertisements
Advertisements
प्रश्न
Show that:
`(x^(a-b))^(a+b)(x^(b-c))^(b+c)(x^(c-a))^(c+a)=1`
उत्तर
`(x^(a-b))^(a+b)(x^(b-c))^(b+c)(x^(c-a))^(c+a)=1`
LHS = `(x^(a-b))^(a+b)(x^(b-c))^(b+c)(x^(c-a))^(c+a)`
`=[x^((a-b)(a+b))][x^((b-c)(b+c))][x^((c-a)(c+a))]`
`=x^((a^2-b^2))x^((b^2-c^2))x^((c^2-a^2))`
`=x^(a^2-b^2+b^2-c^2+c^2-a^2)`
`=x^0`
= 1
= RHS
APPEARS IN
संबंधित प्रश्न
Simplify the following:
`(5^(n+3)-6xx5^(n+1))/(9xx5^x-2^2xx5^n)`
Solve the following equation for x:
`4^(2x)=1/32`
Show that:
`1/(1+x^(a-b))+1/(1+x^(b-a))=1`
Show that:
`{(x^(a-a^-1))^(1/(a-1))}^(a/(a+1))=x`
Find the value of x in the following:
`2^(x-7)xx5^(x-4)=1250`
Find the value of x in the following:
`(sqrt(3/5))^(x+1)=125/27`
Solve the following equation:
`4^(2x)=(root3 16)^(-6/y)=(sqrt8)^2`
If a, b, c are positive real numbers, then \[\sqrt{a^{- 1} b} \times \sqrt{b^{- 1} c} \times \sqrt{c^{- 1} a}\] is equal to
Find:-
`125^(1/3)`
Simplify:
`(1^3 + 2^3 + 3^3)^(1/2)`