Advertisements
Advertisements
प्रश्न
Find:-
`125^(1/3)`
उत्तर
We can write the given expression as follows
⇒ `125^(1/3) = (5^3)^(1/3)`
On simplifying
⇒ `125^(1/3) = 5^(3 xx 1/3)`
∴ `125^(1/3) = 5`
APPEARS IN
संबंधित प्रश्न
Simplify the following
`3(a^4b^3)^10xx5(a^2b^2)^3`
Simplify the following:
`(5xx25^(n+1)-25xx5^(2n))/(5xx5^(2n+3)-25^(n+1))`
Simplify the following:
`(6(8)^(n+1)+16(2)^(3n-2))/(10(2)^(3n+1)-7(8)^n)`
Solve the following equations for x:
`2^(2x)-2^(x+3)+2^4=0`
Assuming that x, y, z are positive real numbers, simplify the following:
`(sqrt2/sqrt3)^5(6/7)^2`
Simplify:
`(0.001)^(1/3)`
Write the value of \[\left\{ 5( 8^{1/3} + {27}^{1/3} )^3 \right\}^{1/4} . \]
If \[2^{- m} \times \frac{1}{2^m} = \frac{1}{4},\] then \[\frac{1}{14}\left\{ ( 4^m )^{1/2} + \left( \frac{1}{5^m} \right)^{- 1} \right\}\] is equal to
Find:-
`125^((-1)/3)`
If `a = 2 + sqrt(3)`, then find the value of `a - 1/a`.