Advertisements
Advertisements
प्रश्न
Find:-
`9^(3/2)`
बेरीज
उत्तर
We can write the given expression as follows
⇒ `9^(3/2) = (3^2)^(3/2)`
On simplifying
⇒ `9^(3/2) = 3^(2 xx 3/2) ...["using" (a^p)^q = a^(pq)]`
⇒ `9^(3/2) = 3^3`
∴ `9^(3/2) = 27`
shaalaa.com
या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
APPEARS IN
संबंधित प्रश्न
Simplify the following:
`(5^(n+3)-6xx5^(n+1))/(9xx5^x-2^2xx5^n)`
Simplify:
`root5((32)^-3)`
Prove that:
`sqrt(3xx5^-3)divroot3(3^-1)sqrt5xxroot6(3xx5^6)=3/5`
Show that:
`1/(1+x^(a-b))+1/(1+x^(b-a))=1`
If `27^x=9/3^x,` find x.
State the quotient law of exponents.
Which of the following is (are) not equal to \[\left\{ \left( \frac{5}{6} \right)^{1/5} \right\}^{- 1/6}\] ?
If x-2 = 64, then x1/3+x0 =
The value of m for which \[\left[ \left\{ \left( \frac{1}{7^2} \right)^{- 2} \right\}^{- 1/3} \right]^{1/4} = 7^m ,\] is
Simplify:
`(3/5)^4 (8/5)^-12 (32/5)^6`