Advertisements
Advertisements
प्रश्न
If \[2^{- m} \times \frac{1}{2^m} = \frac{1}{4},\] then \[\frac{1}{14}\left\{ ( 4^m )^{1/2} + \left( \frac{1}{5^m} \right)^{- 1} \right\}\] is equal to
पर्याय
- \[\frac{1}{2}\]
2
4
\[- \frac{1}{4}\]
उत्तर
We have to find the value of \[\frac{1}{14}\left\{ ( 4^m )^{1/2} + \left( \frac{1}{5^m} \right)^{- 1} \right\}\] provided `2^-m xx 1/2^m = 1/4`
Consider,
`2^-m xx 1/2^m = 1/4`
=`1/2^m xx 1/2^m`
= `1/(2^m xx 2^m)`
`= 1/2^(2m) = 1/2^2`
Equating the power of exponents we get
`2m = 2`
`m=2/2`
`m=1`
By substituting \[\frac{1}{14}\left\{ ( 4^m )^{1/2} + \left( \frac{1}{5^m} \right)^{- 1} \right\}\] we get
\[\frac{1}{14}\left\{ ( 4^m )^{1/2} + \left( \frac{1}{5^m} \right)^{- 1} \right\}\] = \[\frac{1}{14}\left\{ ( 4^m )^{1× 1/2} + \left( \frac{1}{5^m} \right)^{- 1} \right\}\]
`= 1/14 {2^(2xx1/2)+ 1/5^-1}`
`= 1/14 {2^(2xx1/2)+ 1/(1/5)}`
`= 1/14 {2 + 1 xx 5/1}`
\[\frac{1}{14}\left\{ ( 4^m )^{1/2} + \left( \frac{1}{5^m} \right)^{- 1} \right\}\] = `1/14 {2+5}`
=`1/14 (7)`
`= 1/14 xx 7`
= `1/2`
APPEARS IN
संबंधित प्रश्न
Solve the following equation for x:
`4^(x-1)xx(0.5)^(3-2x)=(1/8)^x`
Assuming that x, y, z are positive real numbers, simplify the following:
`(x^((-2)/3)y^((-1)/2))^2`
Prove that:
`9^(3/2)-3xx5^0-(1/81)^(-1/2)=15`
Find the value of x in the following:
`5^(x-2)xx3^(2x-3)=135`
Find the value of x in the following:
`5^(2x+3)=1`
Find the value of x in the following:
`(sqrt(3/5))^(x+1)=125/27`
If 3x-1 = 9 and 4y+2 = 64, what is the value of \[\frac{x}{y}\] ?
Which of the following is (are) not equal to \[\left\{ \left( \frac{5}{6} \right)^{1/5} \right\}^{- 1/6}\] ?
If x is a positive real number and x2 = 2, then x3 =
Simplify:-
`(1/3^3)^7`