Advertisements
Advertisements
प्रश्न
If (16)2x+3 =(64)x+3, then 42x-2 =
पर्याय
64
256
32
512
उत्तर
We have to find the value of`4^(2x -2)`provided `(16)^(2x +3) = (64)^(x+3)`
So,
`(16)^(2x +3) = (64)^(x+3)`
`(2^4)^(2x +3) = (2^6)^(x+3)`
`2^(8x +12) = 2^(6x+18)`
Equating the power of exponents we get
`8x +12 = 6x +18`
`8x - 6x = 18 -12`
`2x = 6`
`x = 6/2`
`x=3`
The value of `4^(2x-2)` is
` = 4^(2x-2)`
`4^(2 xx 3- 2)`
`4^(6-2)`
`4^4`
= 256
APPEARS IN
संबंधित प्रश्न
Simplify:-
`2^(2/3). 2^(1/5)`
Assuming that x, y, z are positive real numbers, simplify the following:
`(x^((-2)/3)y^((-1)/2))^2`
If `3^(x+1)=9^(x-2),` find the value of `2^(1+x)`
If a and b are different positive primes such that
`(a+b)^-1(a^-1+b^-1)=a^xb^y,` find x + y + 2.
If a, b, c are positive real numbers, then \[\sqrt{a^{- 1} b} \times \sqrt{b^{- 1} c} \times \sqrt{c^{- 1} a}\] is equal to
If \[\frac{3^{2x - 8}}{225} = \frac{5^3}{5^x},\] then x =
If \[\sqrt{5^n} = 125\] then `5nsqrt64`=
If 10x = 64, what is the value of \[{10}^\frac{x}{2} + 1 ?\]
\[\frac{1}{\sqrt{9} - \sqrt{8}}\] is equal to
The value of \[\frac{\sqrt{48} + \sqrt{32}}{\sqrt{27} + \sqrt{18}}\] is