Advertisements
Advertisements
प्रश्न
Find:-
`32^(1/5)`
बेरीज
उत्तर
We can write the given expression as follows
⇒ `32^(1/5) = (2^5)^(1/5)`
On simplifying
⇒ `32^(1/5) = 2^(5 xx 1/5)`
∴ `32^(1/5) = 2`
shaalaa.com
या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
APPEARS IN
संबंधित प्रश्न
Assuming that x, y, z are positive real numbers, simplify the following:
`(sqrt2/sqrt3)^5(6/7)^2`
Simplify:
`((5^-1xx7^2)/(5^2xx7^-4))^(7/2)xx((5^-2xx7^3)/(5^3xx7^-5))^(-5/2)`
Show that:
`[{x^(a(a-b))/x^(a(a+b))}div{x^(b(b-a))/x^(b(b+a))}]^(a+b)=1`
Find the value of x in the following:
`5^(2x+3)=1`
Write the value of \[\sqrt[3]{125 \times 27}\].
The value of x − yx-y when x = 2 and y = −2 is
If x-2 = 64, then x1/3+x0 =
When simplified \[(256) {}^{- ( 4^{- 3/2} )}\] is
If \[x + \sqrt{15} = 4,\] then \[x + \frac{1}{x}\] =
Find:-
`125^(1/3)`