Advertisements
Advertisements
Question
Which one of the following is not equal to \[\left( \sqrt[3]{8} \right)^{- 1/2} ?\]
Options
\[\sqrt[3]{2}^{- 1/2}\]
\[8^{- 1/6}\]
\[\frac{1}{(\sqrt[3]{8} )^{1/2}}\]
\[\frac{1}{\sqrt{2}}\]
Solution
We have to find the value of `(3sqrt8)^(-1/2)`
So,
`(3sqrt8)^(-1/2) = (3sqrt(2xx 2xx 2))^(-1/2)`
`=(3sqrt(2^3))^(1/2)`
`2^(3 xx 1/3 xx -1/2)`
`2^(3 xx 1/3 xx -1/2)`
`(3sqrt8)^(-1/2) = 2^(-1/2)`
`= 1/(2^(1/2))`
`= 1/sqrt2`
Also, `(sqrt8)^(-1/2) = 2 ^(-1/6)`
APPEARS IN
RELATED QUESTIONS
Assuming that x, y, z are positive real numbers, simplify the following:
`(sqrt(x^-3))^5`
Prove that:
`(1/4)^-2-3xx8^(2/3)xx4^0+(9/16)^(-1/2)=16/3`
If a and b are different positive primes such that
`((a^-1b^2)/(a^2b^-4))^7div((a^3b^-5)/(a^-2b^3))=a^xb^y,` find x and y.
If \[8^{x + 1}\] = 64 , what is the value of \[3^{2x + 1}\] ?
The value of \[\left\{ 8^{- 4/3} \div 2^{- 2} \right\}^{1/2}\] is
If \[\frac{2^{m + n}}{2^{n - m}} = 16\], \[\frac{3^p}{3^n} = 81\] and \[a = 2^{1/10}\],than \[\frac{a^{2m + n - p}}{( a^{m - 2n + 2p} )^{- 1}} =\]
If x = \[\frac{2}{3 + \sqrt{7}}\],then (x−3)2 =
Find:-
`16^(3/4)`
Find:-
`125^((-1)/3)`
Simplify:-
`(1/3^3)^7`