Advertisements
Advertisements
Question
If a, b, c are positive real numbers, then \[\sqrt{a^{- 1} b} \times \sqrt{b^{- 1} c} \times \sqrt{c^{- 1} a}\] is equal to
Options
1
abc
\[\sqrt{abc}\]
\[\frac{1}{abc}\]
Solution
We have to find the value of `sqrt(a^-1b)xx sqrt (b^-1c) xx sqrt(c^-1 a)` when a, b, c are positive real numbers.
So,
`sqrt(a^-1b)xx sqrt (b^-1c) xx sqrt(c^-1 a) =sqrt(1/a xxb)xx sqrt(1/b xx c) xx sqrt(1/c xx a)`
`sqrt(b/a) xx sqrt (c/b) xx sqrt(a/c)`
Taking square root as common we get
\[\sqrt{a^{- 1} b} \times \sqrt{b^{- 1} c} \times \sqrt{c^{- 1} a} = \sqrt{\frac{b}{a} \times \frac{c}{b} \times \frac{a}{c}}\]
\[\sqrt{a^{- 1} b} \times \sqrt{b^{- 1} c} \times \sqrt{c^{- 1} a} = 1\]
APPEARS IN
RELATED QUESTIONS
If 49392 = a4b2c3, find the values of a, b and c, where a, b and c are different positive primes.
If `a=xy^(p-1), b=xy^(q-1)` and `c=xy^(r-1),` prove that `a^(q-r)b^(r-p)c^(p-q)=1`
Find the value of x in the following:
`(sqrt(3/5))^(x+1)=125/27`
If a and b are distinct primes such that `root3 (a^6b^-4)=a^xb^(2y),` find x and y.
When simplified \[( x^{- 1} + y^{- 1} )^{- 1}\] is equal to
The value of \[\left\{ 8^{- 4/3} \div 2^{- 2} \right\}^{1/2}\] is
If 9x+2 = 240 + 9x, then x =
If (16)2x+3 =(64)x+3, then 42x-2 =
\[\frac{1}{\sqrt{9} - \sqrt{8}}\] is equal to
Find:-
`16^(3/4)`